vbmp: Variational Bayesian Multinomial Probit Regression for multi-class classification in R
نویسندگان
چکیده
SUMMARY Vbmp is an R package for Gaussian Process classification of data over multiple classes. It features multinomial probit regression with Gaussian Process priors and estimates class posterior probabilities employing fast variational approximations to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination. Being equipped with only one main function and reasonable default values for optional parameters, vbmp combines flexibility with ease of usage as is demonstrated on a breast cancer microarray study. AVAILABILITY The R library vbmp implementing this method is part of Bioconductor and can be downloaded from http://www.dcs.gla.ac.uk/~girolami
منابع مشابه
Multi-class cancer classification using multinomial probit regression with Bayesian gene selection.
We consider the problems of multi-class cancer classification from gene expression data. After discussing the multinomial probit regression model with Bayesian gene selection, we propose two Bayesian gene selection schemes: one employs different strongest genes for different probit regressions; the other employs the same strongest genes for all regressions. Some fast implementation issues for B...
متن کاملMulti-class Semi-supervised Learning with the e-truncated Multinomial Probit Gaussian Process
Recently, the null category noise model has been proposed as a simple and elegant solution to the problem of incorporating unlabeled data into a Gaussian process (GP) classification model. In this paper, we show how this binary likelihood model can be generalised to the multi-class setting through the use of the multinomial probit GP classifier. We present a Gibbs sampling scheme for sampling t...
متن کاملVariational Bayesian Multinomial Probit Regression with Gaussian Process Priors
It is well known in the statistics literature that augmenting binary and polychotomous response models with gaussian latent variables enables exact Bayesian analysis viaGibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favor of gaussian process (GP) priors over functions, and employing variational a...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملA Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2008